English English | 中文 中文

Most Cited Plant Diversity Articles

The most cited articles published since 2015, extracted from Scopus.

Plant diversity in a changing world: Status, trends, and conservation needs

Volume 38, Issue 1, February 2016, Pages 10-16
Richard T. Corlett

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences The conservation of plants has not generated the sense of urgency—or the funding—that drives the conservation of animals, although plants are far more important for us. There are an estimated 500,000 species of land plants (angiosperms, gymnosperms, ferns, lycophytes, and bryophytes), with diversity strongly concentrated in the humid tropics. Many species are still unknown to science. Perhaps a third of all land plants are at risk of extinction, including many that are undescribed, or are described but otherwise data deficient. There have been few known global extinctions so far, but many additional species have not been recorded recently and may be extinct. Although only a minority of plant species have a specific human use, many more play important roles in natural ecosystems and the services they provide, and rare species are more likely to have unusual traits that could be useful in the future. The major threats to plant diversity include habitat loss, fragmentation, and degradation, overexploitation, invasive species, pollution, and anthropogenic climate change. Conservation of plant diversity is a massive task if viewed globally, but the combination of a well-designed and well-managed protected area system and ex situ gap-filling and back-up should work anywhere. The most urgent needs are for the completion of the global botanical inventory and an assessment of the conservation status of the 94% of plant species not yet evaluated, so that both in and ex situ conservation can be targeted efficiently. Globally, the biggest conservation gap is in the hyperdiverse lowland tropics and this is where attention needs to be focused.

How to conserve threatened Chinese plant species with extremely small populations?

Volume 38, Issue 1, February 2016, Pages 45-52
Sergei Volis

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences The Chinese flora occupies a unique position in global plant diversity, but is severely threatened. Although biodiversity conservation in China has made significant progress over the past decades, many wild plant species have extremely small population sizes and therefore are in extreme danger of extinction. The concept of plant species with extremely small populations (PSESPs), recently adopted and widely accepted in China, lacks a detailed description of the methodology appropriate for conserving PSESPs. Strategies for seed sampling, reintroduction, protecting PSESP locations, managing interactions with the local human population, and other conservation aspects can substantially differ from those commonly applied to non-PSESPs. The present review is an attempt to provide a detailed conservation methodology with realistic and easy-to-follow guidelines for PSESPs in China.

Trait-based representation of hydrological functional properties of plants in weather and ecosystem models

Volume 39, Issue 1, February 2017, Pages 1-12
Ashley M. Matheny | Golnazalsadat Mirfenderesgi | Gil Bohrer

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Land surface models and dynamic global vegetation models typically represent vegetation through coarse plant functional type groupings based on leaf form, phenology, and bioclimatic limits. Although these groupings were both feasible and functional for early model generations, in light of the pace at which our knowledge of functional ecology, ecosystem demographics, and vegetation-climate feedbacks has advanced and the ever growing demand for enhanced model performance, these groupings have become antiquated and are identified as a key source of model uncertainty. The newest wave of model development is centered on shifting the vegetation paradigm away from plant functional types (PFTs) and towards flexible trait-based representations. These models seek to improve errors in ecosystem fluxes that result from information loss due to over-aggregation of dissimilar species into the same functional class. We advocate the importance of the inclusion of plant hydraulic trait representation within the new paradigm through a framework of the whole-plant hydraulic strategy. Plant hydraulic strategy is known to play a critical role in the regulation of stomatal conductance and thus transpiration and latent heat flux. It is typical that coexisting plants employ opposing hydraulic strategies, and therefore have disparate patterns of water acquisition and use. Hydraulic traits are deterministic of drought resilience, response to disturbance, and other demographic processes. The addition of plant hydraulic properties in models may not only improve the simulation of carbon and water fluxes but also vegetation population distributions.

Cenozoic plant diversity of Yunnan: A review

Volume 38, Issue 6, December 2016, Pages 271-282
Yongjiang Huang | Yongjiang Huang | Linbo Jia | Linbo Jia | Qiong Wang | Volker Mosbrugger | Torsten Utescher | Torsten Utescher | Tao Su | Tao Su | Zhekun Zhou | Zhekun Zhou

© 2017 Kunming Institute of Botany, Chinese Academy of Sciences Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo–Malaysia) type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to late Pliocene through to the present, floristic composition and vegetation types changed markedly, presumably in response to altitude changes and coeval global cooling. An integration of palaeoclimate data suggests that during the Neogene Yunnan was warmer and wetter than today. Moreover, northern Yunnan witnessed a pronounced temperature decline, while southern Yunnan experienced only moderate temperature changes. Summer precipitation was consistently higher than winter precipitation, suggesting a rainfall seasonality. This summary on palaeoclimates helps us to understand under what conditions plant diversity occurred and evolved in Yunnan throughout the Cenozoic.

Molecular phylogeny reveals the non-monophyly of tribe Yinshanieae (Brassicaceae) and description of a new tribe, Hillielleae

Volume 38, Issue 4, August 2016, Pages 171-182
Hongliang Chen | Hongliang Chen | Tao Deng | Jipei Yue | Ihsan A. Al-Shehbaz | Hang Sun

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences The taxonomic treatment within the unigeneric tribe Yinshanieae (Brassicaceae) is controversial, owing to differences in generic delimitation applied to its species. In this study, sequences from nuclear ITS and chloroplast trnL-F regions were used to test the monophyly of Yinshanieae, while two nuclear markers (ITS, ETS) and four chloroplast markers (trnL-F, trnH-psbA, rps16, rpL32-trnL) were used to elucidate the phylogenetic relationships within the tribe. Using maximum parsimony, maximum likelihood, and Bayesian inference methods, we reconstructed the phylogeny of Brassicaceae and Yinshanieae. The results show that Yinshanieae is not a monophyletic group, with the taxa splitting into two distantly related clades: one clade contains four taxa and falls in Lineage I, whereas the other includes all species previously placed in Hilliella and is embedded in the Expanded Lineage II. The tribe Yinshanieae is redefined, and a new tribe, Hillielleae, is proposed based on combined evidence from molecular phylogeny, morphology, and cytology.

Mobilizing and integrating big data in studies of spatial and phylogenetic patterns of biodiversity

Volume 38, Issue 6, December 2016, Pages 264-270
Douglas E. Soltis | Pamela S. Soltis | Douglas E. Soltis | Pamela S. Soltis | Douglas E. Soltis

© 2017 Kunming Institute of Botany, Chinese Academy of Sciences The current global challenges that threaten biodiversity are immense and rapidly growing. These biodiversity challenges demand approaches that meld bioinformatics, large-scale phylogeny reconstruction, use of digitized specimen data, and complex post-tree analyses (e.g. niche modeling, niche diversification, and other ecological analyses). Recent developments in phylogenetics coupled with emerging cyberinfrastructure and new data sources provide unparalleled opportunities for mobilizing and integrating massive amounts of biological data, driving the discovery of complex patterns and new hypotheses for further study. These developments are not trivial in that biodiversity data on the global scale now being collected and analyzed are inherently complex. The ongoing integration and maturation of biodiversity tools discussed here is transforming biodiversity science, enabling what we broadly term “next-generation” investigations in systematics, ecology, and evolution (i.e., “biodiversity science”). New training that integrates domain knowledge in biodiversity and data science skills is also needed to accelerate research in these areas. Integrative biodiversity science is crucial to the future of global biodiversity. We cannot simply react to continued threats to biodiversity, but via the use of an integrative, multifaceted, big data approach, researchers can now make biodiversity projections to provide crucial data not only for scientists, but also for the public, land managers, policy makers, urban planners, and agriculture.

Tibet, the Himalaya, Asian monsoons and biodiversity – In what ways are they related?

Volume 39, Issue 5, October 2017, Pages 233-244
Robert A. Spicer | Robert A. Spicer

© 2017 Kunming Institute of Botany, Chinese Academy of Sciences Prevailing dogma asserts that the uplift of Tibet, the onset of the Asian monsoon system and high biodiversity in southern Asia are linked, and that all occurred after 23 million years ago in the Neogene. Here, spanning the last 60 million years of Earth history, the geological, climatological and palaeontological evidence for this linkage is reviewed. The principal conclusions are that: 1) A proto-Tibetan highland existed well before the Neogene and that an Andean type topography with surface elevations of at least 4.5 km existed at the start of the Eocene, before final closure of the Tethys Ocean that separated India from Eurasia. 2) The Himalaya were formed not at the start of the India–Eurasia collision, but after much of Tibet had achieved its present elevation. The Himalaya built against a pre-existing proto-Tibetan highland and only projected above the average height of the plateau after approximately 15 Ma. 3) Monsoon climates have existed across southern Asia for the whole of the Cenozoic, and probably for a lot longer, but that they were of the kind generated by seasonal migrations of the Inter-tropical Convergence Zone. 4) The projection of the High Himalaya above the Tibetan Plateau at about 15 Ma coincides with the development of the modern South Asia Monsoon. 5) The East Asia monsoon became established in its present form about the same time as a consequence of topographic changes in northern Tibet and elsewhere in Asia, the loss of moisture sources in the Asian interior and the development of a strong winter Siberian high as global temperatures declined. 6) New radiometric dates of palaeontological finds point to southern Asia's high biodiversity originating in the Paleogene, not the Neogene.

Adaptive introductions: How multiple experiments and comparisons to wild populations provide insights into requirements for long-term introduction success of an endangered shrub

Volume 38, Issue 5, October 2016, Pages 238-246
Eric S. Menges | Stacy A. Smith | Carl W. Weekley

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Recovery of an imperiled plant species may require augmentation of existing populations or creation of new ones. Hundreds of such projects have been conducted over the last few decades, but there is a bias in the literature favoring successes over failures. In this paper, we evaluate a series of introductions that experimentally manipulated microhabitat and fire in an adaptive introduction framework. Between 2002 and 2012, we (and our collaborators) carried out ten introductions and augmentations of Florida ziziphus Pseudoziziphus (Condalia, Ziziphus) celata, a clonal shrub limited to very small populations and narrowly endemic to pyrogenic central Florida sandhills. Six of the introductions were designed as experiments to test hypotheses about how demographic performance was affected by microhabitat, fire, and propagule type. Introduced transplants had high survival (<90% annually), inconsistent growth, and little transition to reproduction, while introduced seeds had low germination and survival. Transplants were more efficient than seeds as translocation propagules. Shaded (vs. open) sites supported generally higher transplant and seedling survival and seed germination percentages, but growth responses varied among experiments. Supplemental irrigation increased transplant survival and seed germination, but otherwise seedling and plant survival and growth were not significantly affected. Contrary to expectations based on wild populations, introduced propagules have not been more successful in unshaded sites, suggesting that Florida ziziphus has broader microhabitat preferences than hypothesized. Compared to wild plants, introduced plants had similar survival and responses to fire, slower growth, and more delayed flowering. Introduced plants had no clonal spread. While no introduced population has demonstrated a capacity for long-term viability, one augmented population has flowered and produced viable fruits. Given that Florida ziziphus genets are long-lived, low levels of sexual reproduction may be adequate for the establishment of viable populations. Thus, after many translocations over more than a decade, it is premature to characterize any single translocation as a success or a failure, underscoring the need for a long view of translocation success.

Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective

Volume 38, Issue 5, October 2016, Pages 209-220
Ellie Merrett Wade | Jayanthi Nadarajan | Xiangyun Yang | Daniel Ballesteros | Weibang Sun | Hugh W. Pritchard

© 2016 Approximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP). Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of ex situ conservation for flowering plants. Spore storage could provide a simple and economical method for fern ex situ conservation. Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation. But what is known about the seed and spore biology (storage and germination) of at-risk species? We have used China's PSESP (the first group listing) as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP), storage characteristics are only known for 8% of PSESP (10 species). Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.

An experimental approach to addressing ecological questions related to the conservation of plant biodiversity in China

Volume 38, Issue 1, February 2016, Pages 2-9
Roy Turkington | Roy Turkington | William L. Harrower | William L. Harrower

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences We briefly introduce and describe seven questions related to community structure and biodiversity conservation that can be addressed using field experiments, and provide the context for using the vast geographic diversity, biodiversity, and network of Nature Reserves in China to perform these experiments. China is the world's third largest country, has a diverse topography, covers five climatic zones from cold-temperate to tropical, has 18 vegetation biomes ranging from Arctic/alpine tundra and desert to Tropical rain forest, and supports the richest biodiversity in the temperate northern hemisphere (>10% of the world total). But this tremendous natural resource is under relentless assault that threatens to destroy biodiversity and negatively impact the services ecosystems provide. In an attempt to prevent the loss of biodiversity, China has established 2729 nature reserves which cover 14.84% of the nation's area. Unfortunately underfunding, mismanagement, illegal activities, invasive species and global climate change threaten the effectiveness of these protected areas. Attention has focused on protecting species and their habitats before degradation and loss of either species or habitats occur. Here we argue that we must move beyond the simple protection of ecosystems, beyond their description, and by using experiments, try to understand how ecosystems work. This new understanding will allow us to design conservation programs, perform restoration of damaged or degraded areas, and address resource management concerns (e.g., agriculture, logging, mining, hunting) more effectively than with the current approach of ad hoc reactions to ecological and environmental problems. We argue that improving our understanding of nature can best be done using well designed, replicated, and typically manipulative field experiments.

Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China

Volume 38, Issue 6, December 2016, Pages 303-311
Yahuang Luo | Yahuang Luo | Yahuang Luo | Jie Liu | Shaolin Tan | Shaolin Tan | Marc W. Cadotte | Kun Xu | Lianming Gao | Dezhu Li | Dezhu Li | Dezhu Li

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence. However, little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly, especially in understory herbaceous communities. Here we partitioned the variance of four functional traits (maximum height, leaf thickness, leaf area and specific leaf area) across four nested biological scales: individual, species, plot, and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance. We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain. We found interspecific trait variation was the main trait variation component for leaf traits, although intraspecific trait variation ranged from 10% to 28% of total variation. In particular, maximum height exhibited high plasticity, and intraspecific variation accounted for 44% of the total variation. Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient, there was little variance at our largest (elevation) scale in leaf traits and functional diversity remained constant along the elevational gradient, indicating that traits responded to smaller scale influences. External filtering was only observed at high elevations. However, strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities, possibly due to competition. Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes. This approach –– integrating different biological scales of trait variation –– may provide a better understanding of the mechanisms involved in the structure of communities.

Evolution of biogeographic disjunction between eastern Asia and North America in Chamaecyparis: Insights from ecological niche models

Volume 39, Issue 3, June 2017, Pages 111-116
Ping Liu | Ping Liu | Jun Wen | Tingshuang Yi

© 2017 Kunming Institute of Botany, Chinese Academy of Sciences The disjunct distribution of plants between eastern Asia (EA) and North America (NA) is one of the most well-known biogeographic patterns. However, the formation and historical process of this pattern have been long debated. Chamaecyparis is a good model to test previous hypotheses about the formation of this disjunct pattern as it contains six species disjunctly distributed in EA, western North America (WNA) and eastern North America (ENA). In this study, we applied ecological niche models to test the formation of the disjunct pattern of Chamaecyparis. The model calibrated with the EA species was able to predict the distribution of eastern NA species well, but not the western NA species. Furthermore, the eastern Asian species were shown to have higher niche overlap with the eastern North American species. The EA species were also shown to share more similar habitats with ENA species than with WNA species in the genus. Chamaecyparis species in WNA experienced a significant niche shift compared with congeneric species. Chamaecyparis had a low number of suitable regions in Europe and the middle and western NA during the Last Glacial Maximum (LGM) period, and became extinct in the former region whereas it retains residual distribution in the latter. The extirpations in western NA and Europe in response to the late Neogene and Quaternary climatic cooling and the more similar habitats between ENA and EA ultimately shaped the current intercontinental disjunct distribution of Chamaecyparis. Both current hypotheses may be also jointly applied to explain more eastern Asian and eastern North American disjunctions observed today.

Pollination and seed dispersal of Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae): An economic plant species with extremely small populations in China

Volume 38, Issue 5, October 2016, Pages 227-232
Gao Chen | Gao Chen | Changqiu Liu | Weibang Sun | Weibang Sun

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Pollination and seed dispersal in angiosperms have long been investigated in order to understand the coevolution of plants and animals. However, the signals from flowers and/or seeds to attract pollinators and/or seed dispersers have received comparatively little attention. In this study, the pollination biology and seed dispersal of the vulnerable agarwood plant Aquilaria sinensis (Lour.) Gilg, a traditional medicinal plant in China, was studied in its natural distribution range. The reproductive tactics of A. sinensis were studied in detail by employing various tests dealing with fruit set and also seed dispersal. Dynamic headspace extraction followed by GC-MS analysis was also performed in order to reveal the composition of floral scent. The results showed that noctuids and pyralids are the most effective pollinators of pollinator-dependent A. sinensis. The main compounds of the floral scent were (E, E)-α-Farnesene (61.9 ± 3.2%), trans-Ocimene (16.6 ± 1.2%), and Benzyl salicylate (4.6 ± 1.1%). The results obtained from seed dispersal experiments indicate that hornets are effective seed dispersers and they may play an important role in long-distance seed dispersal of A. sinensis. Based on our findings, we recommend several protection methods for this threatened agarwood plant in China.

Comparative proteomics analyses of intraspecific differences in the response of Stipa purpurea to drought

Volume 38, Issue 2, April 2016, Pages 101-117
Xiong Li | Xiong Li | Yunqiang Yang | Yunqiang Yang | Shihai Yang | Xudong Sun | Xudong Sun | Xin Yin | Xin Yin | Xin Yin | Youjie Zhao | Yongping Yang | Yongping Yang

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Stipa purpurea is widely distributed along a large precipitation gradient on the Tibetan Plateau. This implies that S. purpurea from different populations may have different responses to drought stress. To explore this we compared the morphological and physiological changes of S. purpurea seedlings cultivated from seeds from Gar County and Nagqu County after 7 and 14 days of drought stress and subsequent re-watering. The results showed that S. purpurea plants from the more arid Gar area were more tolerant to drought stress than that from Nagqu. To investigate the potential mechanisms underlying this difference, we used iTRAQ quantitative proteomics technology to analyze protein dynamics in S. purpurea samples treated with 7 days of drought stress and subsequent re-watering. The results indicated that, during the process of drought and re-watering treatments, there were differentially expressed proteins in either or both S. purpurea populations. These differential proteins were divided into 24 functional categories that were mainly associated with stress response, the antioxidant system, photosynthesis, carbohydrate metabolism, and post-translational modifications. According to these results, we concluded that the molecular basis of stronger drought resistance likely lies in the specific up-regulation or higher expression of many proteins involved in stress response, the antioxidant system, post-translational modification and osmotic regulation in S. purpurea from Gar County compared with that from Nagqu. This study improves our understanding of the intraspecific differences in drought resistance within S. purpurea populations, which helps to understand the distribution of S. purpurea along the moisture gradient, as well as the effect of climate change on this species.

Late Pliocene diversity and distribution of Drynaria (Polypodiaceae) in western Yunnan explained by forest vegetation and humid climates

Volume 38, Issue 4, August 2016, Pages 194-200
Yong Jiang Huang | Tao Su | Zhe Kun Zhou | Zhe Kun Zhou

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences The palaeodiversity of flowering plants in Yunnan has been extensively interpreted from both a molecular and fossil perspective. However, for cryptogamic plants such as ferns, the palaeodiversity remains poorly known. In this study, we describe a new ferny fossil taxon, Drynaria lanpingensis sp. nov. Huang, Su et Zhou (Polypodiaceae), from the late Pliocene of northwestern Yunnan based on fragmentary frond and pinna with in situ spores. The frond is pinnatifid and the pinnae are entirely margined. The sori are arranged in one row on each side of the primary vein. The spores have a semicircular to bean-shaped equatorial view and a tuberculate surface. Taken together with previously described fossils, there are now representatives of three known fossil taxa of Drynaria from the late Pliocene of western Yunnan. These finds suggest that Drynaria diversity was considerable in the region at that time. As Drynaria is a shade-tolerant plant, growing preferably in wet conditions in the understory of forests, its extensive existence may indicate forest vegetation and humid climates in western Yunnan during the late Pliocene. This is in line with results from floristic investigations and palaeoclimatic reconstructions based on fossil floras.

Center for Plant Conservation's Best Practice Guidelines for the reintroduction of rare plants

Volume 39, Issue 6, December 2017, Pages 390-395
Joyce Maschinski | Matthew A. Albrecht

© 2018 Kunming Institute of Botany, Chinese Academy of Sciences Recent estimates indicate that one-fifth of botanical species worldwide are considered at risk of becoming extinct in the wild. One available strategy for conserving many rare plant species is reintroduction, which holds much promise especially when carefully planned by following guidelines and when monitored long-term. We review the Center for Plant Conservation Best Reintroduction Practice Guidelines and highlight important components for planning plant reintroductions. Before attempting reintroductions practitioners should justify them, should consider alternative conservation strategies, understand threats, and ensure that these threats are absent from any recipient site. Planning a reintroduction requires considering legal and logistic parameters as well as target species and recipient site attributes. Carefully selecting the genetic composition of founders, founder population size, and recipient site will influence establishment and population growth. Whenever possible practitioners should conduct reintroductions as experiments and publish results. To document whether populations are sustainable will require long-term monitoring for decades, therefore planning an appropriate monitoring technique for the taxon must consider current and future needs. Botanical gardens can play a leading role in developing the science and practice of plant reintroduction.

Effect of salinity on seed germination, growth and ion content in dimorphic seeds of Salicornia europaea L. (Chenopodiaceae)

Volume 38, Issue 4, August 2016, Pages 183-189
Nikolai Orlovsky | Ulbasyn Japakova | Huifan Zhang | Sergei Volis

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences The halophyte Salicornia europaea L. is a widely distributed salt-tolerant plant species that produces numerous dimorphic seeds. We studied germination and recovery in dimorphic seeds of Central Asian S. europaea under various salinity conditions. We also tested the effects of various salts on Na+and K+accumulation during plant development from germination to anthesis under greenhouse conditions. We found good germination (close to control) of large seeds under NaCl between 0.5 and 2%, Na2SO4and 2NaCl + KCl + CaCl between 0.5 and 3%, and 2Na2SO4+ K2SO4+ MgSO4between 0.5 and 5%. For the small seeds, we found stimulating effects of chloride salts (both pure and mixed) under 0.5–1% concentrations, and sulfate salts under 0.5–3%. Both types of seeds showed high germination recovery potential. Salt tolerance limits of the two seed types during germination and at the later stages of development were very similar (4–5%). During plant growth the optimal concentrations of mixed chloride and sulfate salts ranged from 0.5 to 2%. The mechanisms of salt tolerance in the two seed types of S. europaea appear to differ, but complement each other, improving overall adaptation of this species to high salinity.

The rapid climate change-caused dichotomy on subtropical evergreen broad-leaved forest in Yunnan: Reduction in habitat diversity and increase in species diversity

Volume 38, Issue 3, June 2016, Pages 142-148
Zhe Ren | Zhe Ren | Hua Peng | Zhen Wen Liu

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture, logging, planting of economic plants, mining activities and changing environment. The aims of the study are to investigate climate change-induced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation. Stacked species distribution models were created to generate ensemble forecasting of species distributions, alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios. Under stacked species distribution models in rapid climate changes scenarios, changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity. This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan, highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.

Spatio-temporal evolution of Allium L. in the Qinghai–Tibet-Plateau region: Immigration and in situ radiation

Volume 39, Issue 4, August 2017, Pages 167-179
Frank Hauenschild | Adrien Favre | Jan Schnitzler | Ingo Michalak | Martin Freiberg | Alexandra N. Muellner-Riehl | Alexandra N. Muellner-Riehl

© 2017 Kunming Institute of Botany, Chinese Academy of Sciences A plethora of studies investigating the origin and evolution of diverse mountain taxa has assumed a causal link between geological processes (orogenesis) and a biological response (diversification). Yet, a substantial delay (up to 30 Myr) between the start of orogenesis and diversification is often observed. Evolutionary biologists should therefore identify alternative drivers of diversification and maintenance of biodiversity in mountain systems. Using phylogenetic, biogeographic, and diversification rate analyses, we could identify two independent processes that most likely explain the diversity of the widespread genus Allium in the Qinghai–Tibet Plateau (QTP) region: (1) While the QTP-related taxa of the subgenus Melanocrommyum diversified in situ, (2) QTP-related taxa of other subgenera migrated into the QTP from multiple source areas. Furthermore, shifts in diversification rates within Allium could not be attributed spatially and temporally to the uplift history of the QTP region. Instead, global cooling and climate oscillations in the Quaternary were major contributors to increased speciation rates in three clades of Allium. Our study therefore adds to the growing evidence supporting the “mountain-geo-biodiversity hypothesis”, which highlights the role of climate oscillations for the diversification of mountain organisms.

Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.)

Volume 38, Issue 2, April 2016, Pages 118-123
Xiaodong Chen | Xiaodong Chen | Xiaoming Zhang | Xiaoming Zhang | Aiqun Jia | Gang Xu | Hong Hu | Xiangyang Hu | Liwei Hu

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Jasmonate (JA), as an important signal, plays a key role in multiple processes of plant growth, development and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L.) are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA-responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a-recognized G-box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti-COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.

History and conservation of wild and cultivated plant diversity in Uganda: Forest species and banana varieties as case studies

Volume 38, Issue 1, February 2016, Pages 23-44
Alan C. Hamilton | Deborah Karamura | Esezah Kakudidi

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences The history of wild and cultivated plant diversity in Uganda is reviewed, taking forest species and bananas as examples. Palynological research into past human influences on forests is reassessed. The evidence suggests that crops were first introduced into the country at about 1000 BCE, farming communities practicing slash and burn agriculture started to significantly influence the floristic composition of forests during the 1st millennium BCE and there was a major episode of forest reduction at about 1000 CE related to socio-economic change. Bananas were probably introduced in the early centuries CE. The colonial era from 1894 saw the introduction of new concepts of land ownership and the establishment of forest reserves and agricultural stations. Forests and banana diversity are currently under threat, Uganda having a very high rate of deforestation and endemic banana varieties proving susceptible to introduced pests and diseases. It is suggested that, under these circumstances, conservationists take an opportunistic approach to field engagement, making use of favourable local conditions as they arise. Partnerships should be sought with elements of society concerned with sustainable use, provision of ecosystem services and cultural survival to widen the social base of plant conservation. International organisations involved in conservation of plant genetic resources and wild plant species should collaborate with one another to develop the conceptual basis of plant conservation, to make it more relevant to countries like Uganda.

Origins and evolution of plant diversity in the Hengduan Mountains, China

Volume 39, Issue 4, August 2017, Pages 161-166
Hang Sun | Jianwen Zhang | Tao Deng | David E. Boufford

Plant conservation in the Anthropocene – Challenges and future prospects

Volume 39, Issue 6, December 2017, Pages 314-330
Vernon H. Heywood

© 2017 Kunming Institute of Botany, Chinese Academy of Sciences Despite the massive efforts that have been made to conserve plant diversity across the world during the past few decades, it is becoming increasingly evident that our current strategies are not sufficiently effective to prevent the continuing decline in biodiversity. As a recent report by the CBD indicates, current progress and commitments are insufficient to achieve the Aichi Biodiversity Targets by 2020. Threatened species lists continue to grow while the world's governments fail to meet biodiversity conservation goals. Clearly, we are failing in our attempts to conserve biodiversity on a sufficient scale. The reasons for this situation are complex, including scientific, technical, sociological, economic and political factors. The conservation community is divided about how to respond. Some believe that saving all existing biodiversity is still an achievable goal. On the other hand, there are those who believe that we need to accept that biodiversity will inevitably continue to be lost, despite all our conservation actions and that we must focus on what to save, why and where. It has also been suggested that we need a new approach to conservation in the face of the challenges posed by the Anthropocene biosphere which we now inhabit. Whatever view one holds on the above issues, it is clear that we need to review the effectiveness of our current conservation strategies, identify the limiting factors that are preventing the Aichi goals being met and at the same time take whatever steps are necessary to make our conservation protocols more explicit, operational and efficient so as to achieve the maximum conservation effect. This paper addresses the key issues that underlie our failure to meet agreed targets and discusses the necessary changes to our conservation approaches. While we can justifiably be proud of our many achievements and successes in plant conservation in the past 30 years, which have helped slow the rate of loss, unless we devise a more coherent, consistent and integrated global strategy in which both the effectiveness and limitations of our current policies, action plans and procedures are recognized, and reflect this in national strategies, and then embark on a much bolder and ambitious set of actions, progress will be limited and plant diversity will continue to decline.

New fossil seeds of Eurya (Theaceae) from East Asia and their paleobiogeographic implications

Volume 38, Issue 3, June 2016, Pages 125-132
Hai Zhu | Hai Zhu | Yong Jiang Huang | Yong Jiang Huang | Tao Su | Zhe Kun Zhou | Zhe Kun Zhou

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Eurya has an excellent fossil record in Europe, but it has only a few fossil occurrences in East Asia though this vast area houses the highest modern diversity of the genus. In this study, three-dimensionally preserved fossil seeds of Eurya stigmosa (Ludwig) Mai from the late Pliocene of northwestern Yunnan, southwestern China are described. The seeds are compressed and flattened, slightly campylotropous, and nearly circular to slightly angular in shape. The surface of the seeds is sculptured by a distinctive foveolate pattern, consisting of funnel-shaped and finely pitted cells. Each seed valve contains a reniform or horseshoe-shaped embryo cavity, a characteristic condyle structure and an internal raphe. These fossil seeds represent one of the few fossil records of Eurya in East Asia. This new finding therefore largely extends the distributional ranges of Eurya during Neogene. Fossil records summarized here show that Eurya persisted in Europe until the early Pleistocene, but disappeared thereafter. The genus might have first appeared in East Asia no later than the late Oligocene, and dispersed widely in regions such as Japan, Nepal, and southwestern China.

RNA-seq analysis of Paris polyphylla var. yunnanensis roots identified candidate genes for saponin synthesis

Volume 38, Issue 3, June 2016, Pages 163-170
Tao Liu | Xiaoxian Li | Shiqing Xie | Ling Wang | Shengchao Yang

© 2016 Kunming Institute of Botany, Chinese Academy of Sciences Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz. is a rhizomatous, herbaceous, perennial plant that has been used for more than a thousand years in traditional Chinese medicine. It is facing extinction due to overharvesting. Steroids are the major therapeutic components in Paris roots, the commercial value of which increases with age. To date, no genomic data on the species have been available. In this study, transcriptome analysis of an 8-year-old root and a 4-year-old root provided insight into the metabolic pathways that generate the steroids. Using Illumina sequencing technology, we generated a high-quality sequence and demonstrated de novo assembly and annotation of genes in the absence of prior genome information. Approximately 87,577 unique sequences, with an average length of 614 bases, were obtained from the root cells. Using bioinformatics methods, we annotated approximately 65.51% of the unique sequences by conducting a similarity search with known genes in the National Center for Biotechnology Information's non-redundant database. The unique transcripts were functionally classified using the Gene Ontology hierarchy and the Kyoto Encyclopedia of Genes and Genomes database. Of 3082 genes that were identified as significantly differentially expressed between roots of different ages, 1518 (49.25%) were upregulated and 1564 (50.75%) were downregulated in the older root. Metabolic pathway analysis predicted that 25 unigenes were responsible for the biosynthesis of the saponins steroids. These data represent a valuable resource for future genomic studies on this endangered species and will be valuable for efforts to genetically engineer P. polyphylla and facilitate saponin-rich plant development.

Share this page: