Most Downloaded Articles

Open access

ISSN: 2666-5441

The role of artificial intelligence and IoT in prediction of earthquakes: Review

Earthquakes are classified as one of the most devastating natural disasters that can have catastrophic effects on the environment, lives, and properties. There has been an increasing interest in the...

Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO

The use of AI technologies in remote sensing (RS) tasks has been the focus of many individuals in both the professional and academic domains. Having more accessible interfaces and tools that allow people...

Cellular automata models for simulation and prediction of urban land use change: Development and prospects

Rapid urbanization and land-use changes are placing immense pressure on resources, infrastructure, and environmental sustainability. To address these, accurate urban simulation models are essential...

On the application of machine learning algorithms in predicting the permeability of oil reservoirs

Permeability is one of the main oil reservoir characteristics. It affects potential oil production, well-completion technologies, the choice of enhanced oil recovery methods, and more. The methods used...

Generating high-resolution climate data in the Andes using artificial intelligence: A lightweight alternative to the WRF model

In weather forecasting, generating atmospheric variables for regions with complex topography, such as the Andean regions with peaks reaching 6500 m above sea level, poses significant challenges. Traditional...

Automatic description of rock thin sections: A web application

The identification and characterization of rock types is a core activity in geology and related fields, including mining, petroleum, environmental science, industry, and construction. Traditionally,...

Determination of future land use changes using remote sensing imagery and artificial neural network algorithm: A case study of Davao City, Philippines

Land use and land cover (LULC) changes refer to alterations in land use or physical characteristics. These changes can be caused by human activities, such as urbanization, agriculture, and resource...

Opportunities, epistemological assessment and potential risks of machine learning applications in volcano science

This manuscript explores the opportunities and epistemological risks of using machine learning in the Earth sciences with a focus on igneous petrology and volcanology. It begins by highlighting the...

Quantification of greenhouse gas emissions from livestock using remote sensing & artificial intelligence

Greenhouse gases (GHGs) from agriculture in Africa are among the world's fastest-growing emissions, with the livestock sector as the primary contributor. However, the methods for quantifying these emissions...

Soil liquefaction assessment using machine learning

Liquefaction is one of the prominent factors leading to damage to soil and structures. In this study, the relationship between liquefaction potential and soil parameters is determined by applying feature...

Machine learning assisted estimation of total solids content of drilling fluids

Characterization and optimization of physical and chemical properties of drilling fluids are critical for the efficiency and success of drilling operations. In particular, maintaining the optimal levels...

ASTER data processing and fusion for alteration minerals and silicification detection: Implications for cupriferous mineralization exploration in the western Anti-Atlas, Morocco

Alteration minerals and silicification are typically associated with a variety of ore mineralizations and could be detected using multispectral remote sensing sensors as indicators for mineral exploration....

LatentPINNs: Generative physics-informed neural networks via a latent representation learning

Physics-informed neural networks (PINNs) are promising to replace conventional mesh-based partial differential equation (PDE) solvers by offering more accurate and flexible PDE solutions. However, PINNs...

Reservoir evaluation using petrophysics informed machine learning: A case study

We propose a novel machine learning approach to improve the formation evaluation from logs by integrating petrophysical information with neural networks using a loss function. The petrophysical information...

Deep learning based identification of rock minerals from un-processed digital microscopic images of undisturbed broken-surfaces

This study employed convolutional neural networks (CNNs) for the classification of rock minerals based on 3179 RGB-scale original microstructural images of undisturbed broken surfaces. The image dataset...

A combined deep CNN-RNN network for rainfall-runoff modelling in Bardha Watershed, India

In recent years, there has been a growing interest in using artificial intelligence (AI) for rainfall-runoff modelling, as it has shown promising adaptability in this context. The current study involved...

Explaining machine learning models trained to predict Copernicus DEM errors in different land cover environments

Machine learning models are increasingly used to correct the vertical biases (mainly due to vegetation and buildings) in global Digital Elevation Models (DEMs), for downstream applications which need...

Water resource forecasting with machine learning and deep learning: A scientometric analysis

Water prediction plays a crucial role in modern-day water resource management, encompassing both hydrological patterns and demand forecasts. To gain insights into its current focus, status, and emerging...

Development of a reliable rock slope stability model utilizing field and analytical data – An integration of FE-ML approaches

Slope instability in hilly regions is a highly complex phenomenon, with triggering factors ranging from natural events to anthropogenic activities. Such failures hit disastrous losses both in terms...

Machine learning in petrophysics: Advantages and limitations

Machine learning provides a powerful alternative data-driven approach to accomplish many petrophysical tasks from subsurface data. It can assimilate information from large and rich data bases and infer...

Earthquake location and magnitude estimation using seismic arrival times pattern and gradient boosted decision trees

We present a machine learning approach for earthquake location and magnitude estimation based on seismic arrival time patterns, using Histogram-Based Gradient Boosting for its high accuracy and computational...

The 3-billion fossil question: How to automate classification of microfossils

Microfossil classification is an important discipline in subsurface exploration, for both oil & gas and Carbon Capture and Storage (CCS). The abundance and distribution of species found in sedimentary...

Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology

Pore size analysis plays a pivotal role in unraveling reservoir behavior and its intricate relationship with confined fluids. Traditional methods for predicting pore size distribution (PSD), relying...

Identification of major minerals in igneous rock microscopic images from thin sections through deep neural network analysis

Several socio-environmental needs (medicine, industry, engineering, orogenesis, genesis, etc.) require minerals to be more precisly defined and characterised. The identification of minerals plays a...

MLReal: Bridging the gap between training on synthetic data and real data applications in machine learning

Among the biggest challenges we face in utilizing neural networks trained on waveform (i.e., seismic, electromagnetic, or ultrasound) data is its application to real data. The requirement for accurate...

Stay Informed

Register your interest and receive email alerts tailored to your needs. Sign up below.